A variational Bayesian methodology for hidden Markov models utilizing Student's-t mixtures

نویسندگان

  • Sotirios Chatzis
  • Dimitrios I. Kosmopoulos
چکیده

The Student’s-t hidden Markov model (SHMM) has been recently proposed as a robust to outliers form of conventional continuous density hidden Markov models, trained by means of the expectation-maximization algorithm. In this paper, we derive a tractable variational Bayesian inference algorithm for this model. Our innovative approach provides an efficient and more robust alternative to EM-based methods, tackling their singularity and overfitting proneness, while allowing for the automatic determination of the optimal model size without cross-validation. We highlight the superiority of the proposed model over the competition using synthetic and real data. We also demonstrate the merits of our methodology in applications from diverse research fields, such as human computer interaction, robotics and semantic audio analysis. Preprint submitted to Elsevier July 20, 2010

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Dependency Structure of Default Processes Based on Bayesian Copula

One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...

متن کامل

Stochastic Variational Inference for Bayesian Time Series Models

Bayesian models provide powerful tools for analyzing complex time series data, but performing inference with large datasets is a challenge. Stochastic variational inference (SVI) provides a new framework for approximating model posteriors with only a small number of passes through the data, enabling such models to be fit at scale. However, its application to time series models has not been stud...

متن کامل

Collapsed Variational Bayesian Inference for Hidden Markov Models

Approximate inference for Bayesian models is dominated by two approaches, variational Bayesian inference and Markov Chain Monte Carlo. Both approaches have their own advantages and disadvantages, and they can complement each other. Recently researchers have proposed collapsed variational Bayesian inference to combine the advantages of both. Such inference methods have been successful in several...

متن کامل

Variational Bayesian Analysis for Hidden Markov Models

The variational approach to Bayesian inference enables simultaneous estimation of model parameters and model complexity. An interesting feature of this approach is that it appears also to lead to an automatic choice of model complexity. Empirical results from the analysis of hidden Markov models with Gaussian observation densities illustrate this. If the variational algorithm is initialised wit...

متن کامل

An Introduction to Hidden Markov Models and Bayesian Networks

We provide a tutorial on learning and inference in hidden Markov models in the context of the recent literature on Bayesian networks. This perspective makes it possible to consider novel generalizations of hidden Markov models with multiple hidden state variables, multiscale representations, and mixed discrete and continuous variables. Although exact inference in these generalizations is usuall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2011